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Los Alamos is one of the birthplaces of computational science. The need of
the weapons program to approximate the solutions of strongly nonlinear, cou-
pled partial differential equations in complex domains has been a continuous
driver in the dual development of supercomputing platforms and of more
accurate and efficient numerical algorithms. More recently, the cessation of
/ nuclear testing has placed a new requirement on algorithms, that of increased
/1 predictiveness.

Despite the importance and magnitude of the effort that has been put into
computational science, in many ways the construction of new algorithms
remains more of an art than a science. While the accuracy and efficiency of
an algorithm can be studied and enhanced with the mathematical tools of
numerical analysis, increased predictiveness is more typically the result of
| incorporating physical principles into the algorithm. In this article, we

| | describe three examples of methodologies for improving predictiveness of
J numerical simulations: mimetic differencing, asymptotic-preserving
- discretization, and implicitly balanced solution techniques. The first two
. methodologies are focused on spatial discretization, and the third, on temporal

/ e +~discretization. Each is attempting to embed some basic underlying physical
f concept into the numerical method, thereby improving the fidelity and

b ’r_ed;lictive capability of computer simulation. At some level, these methodologies

'fgél;;tly being incorporated in existing or next-generation simulation
tware W ithin the Los Alamos weapons program.
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Physically Motivated Discretization Methods

Mimetic Discretizations for PDEs

Many algorithms used for simulation of physical problems solve discrete approxi-
mations of partial differential equations (PDEs). Usually, these PDEs express funda-
mental physical laws—for example, the conservation of mass, momentum, and total
energy in fluid flows, or Faraday’s, Maxwell-Ampere’s, and Gauss’ laws in electro-
magnetics. Such PDEs are derived in the framework of differential calculus, where
the differential operators are introduced as the ratio of coordinate invariant integrals \
in the limit that the integration volume goes to zero. For example, the divergence :\

operator is defined as the limit of a ratio of flux through a closed surface to the vol- :
ume enclosed by this surface. In general, the PDEs approximated for continuum O\
physics applications can be formulated in terms of invariant first-order differential \
operators such as the divergence of a vector or a tensor, the gradient of a scalar or \

vector, and the curl of a vector. Many of the important properties of those PDEs are
inherent in these first-order operators.

The idea underlying mimetic discretizations for PDEs is to develop a discrete vec-
tor and tensor analysis (DVTA) (Shashkov 1996, Hyman and Shashkov 1997a,
Hyman and Shashkov 1997b, Campbell et al. 2002, Margolin et al. 2000a) that pre- |
serves a subset of the properties of its analytic analog. For example, it is useful to |
construct the discrete first-order difference operators so as to satisfy specific analytic
integral identities that imply the conservation laws for continuum PDEs. We note ‘
that it is not possible to preserve all the analytic properties of the discrete operators, L1
and so different DVTAS can result, depending on which properties are considered to |
be most important to a particular application. {1
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The construction of a mimetic discretization for a particular PDE starts with
the choice of a discrete representation of the scalar and vector fields—what is
usually termed the data structure. (Here, we are considering discretizations that
employ a computational mesh, which is the most common but by no means the
only choice.) For example, in electromagnetics it is natural to choose the normal
projections of magnetic flux density with respect to the faces of the computation-
al cells and the normal projections of electric field intensity to edges of the com-
putational cells as primary variables, because these components of the magnetic
and electric fields are continuous at an interface between different materials
(Hyman and Shashkov 1999a). On the other hand, in Lagrangian gas dynamics, it
is natural to locate the Cartesian components of velocity at the nodes of the mesh
because, in a Lagrangian framework, the nodes of the mesh move with the fluid
(Caramana et al. 1998b).

The next step is to identify the connection between the most significant prop-
erties of the model PDEs and the first-order differential operators in terms of
which they are written. For example, the conservation of total energy in
Lagrangian gas dynamics formally follows from the property that the analytic
gradient operator is the negative adjoint of the analytic divergence operator
(Shashkov 1996):

prV-de+ _[vapdv = g[)wpw-nds : n

where p is the (scalar) pressure and W is the (vector) velocity field. Similarly,the
conservation of momentum in the equations of gas dynamics follows from the
following property of the gradient:

JVVpdV = C_Bav pndsS . )

A third example arises in solid dynamics, where the velocity derivatives are
used to estimate the strain-rate tensor. Here it is important to define the discrete
divergence operator so that the divergence of velocity is consistent with the
change of volume of a material parcel (Margolin et al. 2000a):

 Lv)
V-W= lim &¥—— | 3)
5V—0 OV

Sometimes it is not possible to formulate discrete operators that satisfy all of
the desired properties; for example, in multidimensional Lagrangian gas dynam-
ics, it is not possible to construct a discretization that simultaneously conserves
energy and preserves entropy in smooth isentropic flows.

Conservation is not the only important property to mimic. Another feature of
operators, which is closely related to physics, is the associated null space. In the
continuum, the gradient of a scalar function can be zero if and only if this func-
tion is constant in space; we say that the null space of the gradient operator con-
sists of constants. Similarly, the null space of the analytic divergence operator
consists of vectors that can be represented as a curl of another vector field. If the
discrete operators have a larger null space than their continuum counterparts, par-
asitic (that is, unphysical) modes may grow and pollute the numerical solution.
For example, in electromagnetics one may see magnetic monopoles (see discus-
sion in Hyman and Shashkov 1999a). In Lagrangian gas dynamics on a two-
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(a) Physical modes

Translation Shear

(b) Hourglass modes

Subzonal
pressures

dimensional (2-D) quadrilateral mesh, one may see so-called hourglassing modes,
which distort the shape of the cells without producing restoring forces (refer to
Figure 1). This problem is well known in the finite-element community, where it
is termed “under-integration;” however, hourglassing patterns are found in finite-
difference and finite-volume simulations as well. On the other hand, when the
discrete operators have a smaller null space, the solution becomes “stiff,” a prob-
lem analogous to the well-known phenomenon of locking in finite elements.

The finite size of computational cells leads to another important consideration
for mimetic algorithms. While the PDEs can resolve all the scales of motion in a
problem, a simulation is more restricted. For example, in high Reynolds number
flows, the energy dissipation by molecular viscosity cannot be resolved. The
absence of the effects of physical viscosity leads to the need for an artificial
mechanism to dissipate a correct amount of energy; in turbulence, this mecha-
nism is called a subgrid-scale model, while in compressible flows with shocks, it
is termed an artificial viscosity. Artificial viscosity was first proposed by von
Neumann and Richtmyer (1950) to regularize shocks that can not be resolved on
the computational mesh. By “regularize,” we mean dissipate sufficient energy
(and create sufficient entropy) to capture the shock on the mesh without unphysi-
cal oscillations. In fluids and gases, the forces due to physical viscosity are
isotropic. However, to effectively regularize shocks so that the flow does not
depend on the details of the computational mesh, the artificial viscosity needs to
have the form of a (possibly nonsymmetric) second-order tensor (Campbell and
Shashkov 2001).

In Figure 2, we demonstrate the extent to which a numerical solution can be
affected by the choice of mesh if the artificial viscosity is not properly formulat-
ed. The simulated problem is known as the Noh implosion and is widely used to
study the effects of artificial viscosity. Initial conditions for this problem are
specified as a spatially uniform density and an inward radial velocity. The flow
has a simple analytic solution, which is an expanding circular shock wave. For
the values of density and velocity specified, the position of the shock is at radius
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Extension

(c) Subcell discretization

Figure 1. Hourglass Modes
Degrees of freedom that are exhibited
by a quadrilateral cell in a Lagrangian
mesh are shown in (a) and (b). In
addition to physical patterns of
motion-translation, extension, shear
and rotation, a quadrilateral cell in a
Lagrangian mesh can exhibit an
unphysical motion called an hour-
glassing. Because hourglassing nei-
ther changes the area of the cell nor
does any work on the cell, this pat-
tern produces no restoring forces.
Thus, an additional mechanism must
be introduced to control the resulting
artificial grid distortion. One approach
(Margolin and Pyun 1987) to treating
hourglassing is to directly filter the
pattern from the velocity field. An
alternate strategy (Caramana and
Shashkov 1998) is to employ a
subcell discretization for density (see
the dotted lines in Figure 1(c)) that
recognizes the consequent hourglass
distortion and produces restoring
forces (OP in Figure 1(c)).
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Figure 2. The Effects of the
Choice of Mesh and of Artificial
Viscosity on an Implosion
Problem

(a) Results using an initial mesh with
polar symmetry that anticipates the
converging fluid flow of a radial
implosion. The simulation employs an
edge artificial viscosity. The figure
shows the simulation is in excellent
agreement with the analytic solution
at time t = 0.6. (b) Results using the
same edge viscosity as in panel (a)
but starting from a square mesh pro-
duces asymmetric results by t = 0.6.
(c) Results using a tensor artificial
velocity and starting with an initially
square mesh produces superior
results at t = 0.6.
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R = 0.2 for time 7 = 0.6. Now, in Lagrangian simulations, best results are typically
obtained when the symmetry of the flow coincides with the symmetry of the
mesh. Unfortunately, in realistic problems such a choice of mesh is not always
possible. To illustrate these points, we present results for two types of initial
mesh: A polar mesh that reflects the anticipated symmetry of the flow is shown in
Figure 2(a), and a uniform square mesh is shown in Figures 2(b) and 2(c). Two
types of artificial viscosity are used, an “edge viscosity” (Caramana et al. 1998a),
as illustrated in Figures 2(a) and 2(b), and a tensor viscosity (Campbell and
Shashkov 2001), shown in Figure 2(c). The edge artificial viscosity works well
for the initial polar mesh, which is aligned with flow—see Figure 2(a)—but per-
forms poorly for the initial square mesh shown in Figure 2(b), which is not
aligned with flow. The reason for such behavior is that the forces generated by
the artificial edge viscosity depend strongly on mesh. The tensor artificial viscosi-
ty is based on a mimetic discretization of the gradient of a velocity. Because this
gradient is based on the discretization of a coordinate invariant differential opera-
tor, it is able to produce results that show essentially no dependence on the
mesh—see Figure 2(c).

The preservation of the physical flow symmetry in an implosion is critically
important to achieve accurate predictions for the inertial confinement fusion pro-
gram. Small departures from spherical symmetry due to discrete errors can grow
into unacceptably large asymmetries in systems undergoing strong convergence.
Also, the uncertainty of whether a nonsymmetric result is due to numerical errors
or to the physical design severely limits our predictive capability and ultimately
our understanding of the dynamical behavior of an implosion. Those methods that
preserve symmetries are viable for investigating perturbations of these symme-
tries. However, the development of such methods may require consideration of
meshes with curvilinear edges (as opposed to straight line segments) and the deri-
vation of discrete operators on such a mesh (Margolin and Shashkov 1999,
Margolin et al. 2000b). An alternative approach on a line segment mesh has been
developed based on the addition of special corrective forces (Caramana and
Whalen 1998).

We demonstrate the importance of using symmetry-preserving discretizations
on a spherical version of the Rayleigh-Taylor instability (Margolin et al. 2000b).
Radial gravity is assumed to act on an unstable interface placed at radius R = 1.
The computational domain is .25 < R < 1.75. We use a y-law gas as the equation
of state, with y = 1.4. The initial velocity for all nodes is zero. The density is
100.0 for R > 1 and 1.0 for R < 1. The initial pressures are chosen to be in exact
hydrostatic balance. The gravitational constant is taken as 0.02.
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Example 1
(a) No initial perturbation (b) Conventional discretization (c) Symmetry-preserving discretization

Example 2

(d) Small initial perturbation (e) Conventional discretization

Figure 3. The Effects of Symmetry-Preserving Discretization in the Simulation of a Spherical

Rayleigh-Taylor Instability

(a) An interface at R = 1 initially separates a dense outer fluid from a less-dense inner fluid. Both fluids are in a gravitational
field directed radially inward. (b) With no initial perturbation at the fluid interface, the solution obtained by differencing on a line-
segment mesh (Caramana et al. 1998c) develops an unphysical instability by t = 6.0. (c) With the same initial conditions, the
solution at t = 6.0 obtained by differencing on a curvilinear mesh (Margolin and Shashkov 1999) is unchanged from that at =0
(as expected). (d) The initial mesh is slightly perturbed at the north pole. (e) The solution obtained by differencing on a line-
segment mesh shows an instability whose maximum growth rate is not along the vertical axis at t = 6.0, which is incorrect.

(f) The solution obtained using a curvilinear mesh and with the same initial perturbation as in panel (d) produces an instability
whose maximum growth rate is along the vertical axis at t = 6.0, which is qualitatively correct.

In the first example shown in Figure 3, the initial state—refer to Figure 3(a)—
is represented on a polar grid without any initial perturbation. When a conven-
tional discretization scheme is used (Caramana et al. 1998b), an asymmetric trun-
cation error quickly triggers an instability and, by time ¢ = 6, has produced the
unphysical mode shown in Figure 3(b). The symmetry-preserving scheme does
not trigger any instability. Therefore, the solution at r = 6 shown in Figure 3(c) is
unchanged from the initial condition in Figure 3(a).

The second example employs a grid with a very small initial perturbation (not
visible to the naked eye) at R = 1—see Figure 3(d). Let 6; be the usual angle in
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the r — z plane of the points along R = 1 in the unperturbed grid. The perturbed
grid replaces these points with r; = (1 +f (6;)) cos(6;) and z; = (1 + f(6;)) sin(6,).
The perturbation f is designed to produce a very small indentation centered at the
north nole. The exact form is given bv

-1

2
f=-002|1+65 (% - 9,-) . )

The solution that uses a conventional scheme is shown in Figure 3(e). It is vis-
ibly different from that produced by the symmetry-preserving scheme. The maxi-
mum growth rate for the conventional scheme is no longer along the z-axis, even
though the initial perturbation is largest at the z-axis.

The solution at time ¢ = 6 for this case, using mimetic differencing on curvilin-
ear mesh, is shown in Figure 3(f). It exhibits the expected growth of the initial
perturbation. The maximum growth rate is along the z-axis, where the initial per-
turbation is largest.

As previously noted, the construction of discrete operators and the overall
properties of discrete algorithms depend significantly on the choice of the compu-
tational mesh. In addition to trying to coordinate the mesh symmetry with the
expected symmetry of the flow, it is found that aligning the mesh with material
interfaces (Hyman et al. 2002) and having orthogonality of the mesh lines to the
interface (Khamayseh and Hansen 2000) are also key to improving the accuracy
of simulations. Further, the overall accuracy of an algorithm also depends on the
smoothness of the mesh. (A mesh is smooth if such characteristics as the volumes
of the cells and the lengths of the cell edges vary smoothly in the mesh—refer to
Knupp et al. 2002.)

In Lagrangian simulations, there is no guarantee that an initially smooth mesh
will remain smooth. For this reason, a hybrid technique named arbitrary
Lagrangian-Eulerian, or ALE, has been developed (Margolin 1997) to allow the
automatic identification and improvement of Lagrangian meshes during the simu-
lation. ALE techniques require a strategy for how to rezone (that is, improve) a
nonsmooth or tangled mesh. Some elements of this strategy are to preserve the
integrity of interfaces and other physically important surfaces (Garimella et al.
2004) and to try to “mass match,” that is, to make the mass of the cells vary
smoothly in space. However, formulating more general and more complete strate-
gies for rezoning, which simultaneously improve mesh quality while enhancing
solution accuracy, is an active field of research.

There are many other issues to consider in the design of discrete operators. For
example, for the implicit discretization of a diffusion equation, one needs to solve
a system of linear (or perhaps nonlinear) equations. The continuum diffusion
operator is symmetric and positive-definite (SPD). If the discrete gradient and
divergence are negatively adjoint to each other, then the discrete diffusion opera-
tor is also SPD (Hyman et al. 2002). Such SPD operators have the practical
advantage that there exist efficient iterative solvers for the associated matrix
equations.

To summarize, we have illustrated that many of the important properties of the
PDEs that describe the evolution of physical processes are inherent in the differ-
ential operators from which they are constructed. We have given examples of
how to design discrete operators that mimic these important properties of their
analytic counterparts. In some cases, these properties transcend the individual dis-
crete operators and require relationships between different operators to be
enforced. We offer that our approach of a discrete tensor and vector analysis pro-
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vides a formal framework to study the convergence, symmetries, and accuracy of
numerical methods (Berndt et al. 2001). At the same time, we recognize that this
is an unfinished story and much work remains to be done.

Balanced Approximations for Time Integration
of Multiple-Time-Scale Systems

It can be quite a challenge to do numerical modeling of physical systems that
involve many processes occurring at different speeds. The faster processes must
be resolved by small simulation time steps, which is computationally expensive,
or must be modeled by other means.

Often, the faster processes are nearly in balance at all times, and the system as
a whole evolves more slowly than any of the faster processes. A classic example
of this type of situation is the flame speed of a laminar diffusion flame. The diffu-
sion and reaction at the flame front are fast processes. However, they compete
with each other, with one process slightly dominating the other. The two process-
es are nearly in balance, producing a flame front that propagates relatively slow-
ly. This is the type of multiple-time-scale problem considered here. There are
many examples of such problems in plasma physics, geophysical fluid dynamics,
combustion, and radiation hydrodynamics (see, for example, Brackbill and Cohen
1985).

For these problems, it is computationally efficient to resolve only the relative-
ly slow evolution of the system as a whole by using a time step that is large com-
pared with the time scales of the faster processes. At the same time, one must
preserve the dynamical balance responsible for the slow evolution of the system.
An effective way to achieve this result is to design nonlinear, implicit time-inte-
gration schemes that ensure a consistent solution of the separate processes even
when large time steps are used. We call such techniques implicitly balanced
(Knoll et al. 2003). These techniques were avoided in the past because of a lack
of efficient implicit solvers. At that time, formulations based on time splitting
and/or linearization were mainly used (Brackbill and Cohen 1985).

In this article, we demonstrate that (1) split methods contain inherent errors
that could be dangerous for predictive simulation, (2) modified equation analysis
(MEA) (Hirt 1968, Warming and Hyett 1974) can identify possible errors in split
methods, and (3) modern, implicitly balanced methods can provide efficient alter-
natives to split methods. The second point is important because some form of
time splitting is required for many problems of interest. We demonstrate these
three points by using simple numerical experiments and numerical analysis.

First, we show how MEA can identify splitting errors. The classical analysis
of splitting and linearization errors uses asymptotic expansions of exponential
operators (Strang 1968). The technique is well suited to determining the stability
and assessing the order of accuracy (that is, the rate of convergence) of time-split
algorithms. However, the analysis is less useful for obtaining quantitative esti-
mates of the consequences of linearization, the effects of boundary conditions, or
the error itself. The latter items can be more readily obtained using MEA, in
which a Taylor-series truncation analysis is applied to the discretized PDE (or
semidiscretized PDE, for the example considered here). The continuum PDE is
reassembled on the left side of the equation, and all the other terms are brought to
the right side. This is the new, or modified, equation used for MEA.

Let us now define an implicitly balanced method and compare it with a time-
split method, using the equation for the time-dependent reaction-diffusion problem
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du
PrAR )

where u is the dependent variable (or perhaps a system of dependent variables), ¢
is time, D, represents the spatial discretization of a diffusion term, and & repre-
sents the volumetric reaction, with both D, and 2, being functions of u. In an
implicitly balanced method, & u and D, u will be evaluated at the same value of
u when advancing u in time. This evaluation is not done with a linearized time-
split method.

We wish to advance the solution one discrete time step from the existing time
level u” to the new time level u"*1. A standard first-order linearized time-split
method advances the solution using two linearized subsystems:

u'-u" 0
A Dot (©)
and
~n+l #
—u nen+l
=Z,u s 7
A7 u (N

where u” is an intermediate, or temporary, value for u. The effective time step is
then given by

~n+l
n _un

m =pju'+Ruu"™' | (8)

The linearization that has occurred here is in evaluating 2, and &, at the known
values of u, u™.
One possible second-order-accurate implicitly balanced approach would be

T

1
—o, 20" 212l 20" 9

The solution of this time discretization will require a nonlinear iteration involving
both diffusion and reaction. It is clear that given the same initial value, u®,

these two methods do not give the same final value at the new time level, that is,
a1 £ u™1. We need to understand when this difference is important for predic-
tive simulation.

We will compare and contrast implicitly balanced methods with a simple lin-
earized time-split method using numerical analysis and numerical experiments
with a simple model problem. For further details on this discussion, refer to Knoll
et al. (2003). In the following paragraphs, we touch only on issues related to
splitting, not on those related to linearization.

We consider only the simplest first-order splitting to illustrate the important
points. It is straightforward to design a second-order-accurate splitting for the
problem considered below. MEA analysis of more sophisticated splittings is
ongoing.
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We consider the linear reaction-diffusion problem with 7 as the scalar depend-
ent variable, a constant diffusivity D, and a constant reactivity o < 0:

aT T
5—D8)C—2—(XT s (10)

with standard boundary conditions and initial conditions. The dynamical time
scale is estimated to be

~—t — an

where the diffusion time Taif and reaction time Toqc AT€

p— L2 . — 1
Tait = B’ Treac = E

and L is the gradient scale of the solution.
To solve Equation (10), we consider a first-order time-split method that first
advances the reaction and then the diffusion. Specifically, the first-order splitting is

*

T ;T =afl" , and
t
Tn+1_ T* 82Tn+1
-D =0 , (12)
At Ox2

where T" is an intermediate value for 7.
‘We also consider two balanced methods: one first- and the other second-order
accurate. The first-order accurate balanced method is

n+l n 2 i+l
L —T-»p 3;2 T (13)
t x

The second-order accurate balanced method is

-D =al" 2 | (14)

Number 29 2005 Los Alamos Science 197



Physically Motivated Discretization Methods

198

where the intermediate time is defined as,

[N 5)
2

Considering the semidiscrete problem in time (that is, ignoring the spatial dis-
cretization), we require the Taylor series expansion of 7" in terms of 7"*!:

2
At

T"=T"" - AT+ —T,— ... , (16)
2

1

where T, = dT/ok. It is straightforward to show that the modified equation for the
first-order accurate balanced method is

T At
{@—D[&C—z]—w]: ST+ O(Atz) (17)

and for the second-order accurate balanced method is

T Al 3
[T’_D[ax_z}”]:wm*o(m) - as)
MEA tells us that, when Equation (10) is numerically integrated in time using
Equation (13), one is really solving Equation (17). Defining the modified equa-
tion for the split method is more subtle.

After the two steps from the split method in Equation (12) have been com-

bined, the effective time step is given by

Tn+l _ Tn aZTnJrl .
At —D( = OlT B (19)

ox?

To perform the MEA, we must eliminate 7" and T* in favor of T"*! and its
time derivatives. As we have seen, 7" can be eliminated using standard Taylor-
series expansion. Rather than attempting to write a similar Taylor series for 77,
we can use the second step in the split method itself:

2mn+l
T =T1""_ AID[8 T2 } . (20)
ox

The modified equation for the splitting method can now be written as
2 2
T At T
7- 02| _ar|=27 - awp|2L +0(At2) . 21
a X2 2 8x2
New truncation term

Compared with the first-order balanced method, namely, Equation (17), a new
first-order truncation term has appeared in the split modified equation. This new
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Figure 4. Steady-State Solutions
Obtained with the Implicitly
Balanced Method

These solutions of the linear reaction-
diffusion equation—refer to

Equation (10)—were obtained with a
second-order-accurate implicitly bal-
anced method. T is the scalar depend-
ent variable, and x is position. Shown
are the solutions for three values of
constant reactivity o.

term is proportional to the second spatial derivative and scales with o Az. If an
altered diffusion coefficient is used, the modified equation of the split method can
be viewed as having the same form as the modified equation of the balanced
first-order-accurate method. Indeed, if we replace D with D™ in Equation (21) and
equate terms with Equation (17), the result is

* D

" 10 - At (22)

This suggests that using the split algorithm with the diffusion coefficient D*
should reproduce the results of using the first-order-accurate balanced method
with the original diffusion coefficient D. For o < 0, the altered diffusion coeffi-
cient remains positive and less than the original coefficient.

We consider the problem on the domain 0 < x < 1 with initial conditions
Tx,t=0)=0.1,Tx=0,)=1,T(x=1,7) =0.1, D=1, @ =-20, and a time
step, Az, of 0.01. To demonstrate some properties of the solution, we have simu-
lated the problem using the second-order-accurate balanced method with
At =0.0001 and o = -0, -5, and -20. Figure 4 shows how different values of the
finite reaction term o affect the steady-state solutions. Figure 5 shows the time-
dependent solutions at x = 0.1. At early times, the dynamical time scale is domi-
nated by the diffusion time scale, Tgis since L is very small near x = 0O (the initial
gradient is sharp). As this initial structure fades, the impact of finite ¢ on the evo-
lution of the solution becomes clear.

A study of the time-step convergence, verifying that the simple split method is
indeed first-order accurate, is given in Knoll et al. (2003). However, it is not
apparent from this study that the split method will give the correct steady-state
solution using a large time step—that is, aAt = 0(1). Figure 6 shows the solutions
as functions of time at a particular point (x = 0.1) for the different solution meth-
ods. For a time step chosen so that aAr = 0.2, the split method does not give the
correct steady-state solution. The solution from the split method gives no indica-
tion of error since the method is stable and qualitatively correct.

In Figure 7, we show the time history of the solution at the same point
(x =0.1) for the first-order balanced method and for the split method with the
modified diffusion coefficient D* given in Equation (22). These two solutions are
identical, confirming the validity of the MEA of the splitting errors. From these
results, it is evident that the solutions given by these first-order split methods can
be interpreted as solutions from a balanced method using an altered diffusion
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Figure 5. Time-Dependent
Solutions Obtained with the
Implicitly Balanced Method
These time-dependent solutions to
Equation (10) at x = 0.1 correspond to
the steady-state solutions shown in
Figure 4.

Figure 6. Implicitly Balanced
Solutions vs a Split Solution

We compare the time-dependent solu-
tions to Equation (10) at x = 0.1 using
a second-order-accurate implicitly
balanced method (“Base”), a first-
order-accurate implicitly balanced
method (“Balanced 1st”), and a split
method (“Split”).

Figure 7. Equivalence of the
First-Order-Accurate Balanced
Solution and the Split Solution
The solution to Equation (10) obtained
with the first-order-accurate balanced
method and the original diffusion
coefficient (“Balanced, 1st”) is identi-
cal to the solution obtained with the
split method and the corrected diffu-
sion coefficient (“Split, modified D”).
The original and corrected diffusion
coefficients are related through
Equation (22).
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coefficient. The degree to which the diffusion coefficient is altered is proportional
to the chosen time step normalized by a normal mode (fast) time scale, that is,

oAt = AtlT

200

reac’

Developing implicitly balanced methods that can be used to simulate large
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three-dimensional (3-D) multiphysics problems is an ongoing research effort that
involves many contributors. To give one example, work in this area is discussed
in Knoll and Keyes (2004).

Another way to remove the splitting errors is by iterating on the splitting
methods. Although some 3-D multiphysics problems have been simulated with
implicitly balanced methods, time splitting and linearization are still required for
many problems. Thus, we must gain a deeper understanding of the inherent error
in time splitting and linearization to achieve more accurate simulations.

Finally, we present results from research using implicitly balanced methods to
simulate hurricane intensification (Mousseau et al. 2002, Reisner et al. 2003,
Reisner et al. 2004). This 3-D work involves the simulation of compressible mul-
tiphase flow. Hurricanes intensify by passing over warm water, and the signature
of intensification is the minimum pressure in the hurricane eye. In Reisner et al.
(2004), an initially steady-state hurricane is driven into a transient state by specif-
ic time-dependent boundary conditions, namely, a time-varying temperature at the
ocean’s surface. The dynamical time scale in this problem is estimated to be
roughly 100 seconds, whereas the sound-wave time scale is roughly 1 second.
The split-linearized method, therefore, is used on sound-wave physics equations.
Figure 8 shows that, for the implicitly balanced method, the correct solution con-
verges for a time step of Ar = 60 seconds, whereas the split-linearized method
requires a time step of A7 = 1 second to achieve convergence. In this article, the
implicitly balanced method achieved convergence about 5 times faster than the
split-linearized method.

Number 29 2005 Los Alamos Science

Figure 8. Solution
Convergences for the Balanced
and Split Methods

We used a 3-D simulation of the
minimum pressure in the eye of a hur-
ricane to compare the convergences
of (a) split-linearized solutions for
different values of the time step (Af)
and (b) implicitly balanced solutions.

201



Physically Motivated Discretization Methods

202

Asymptotic-Preserving Discretization Schemes

Asymptotic limits associated with PDEs are limits in which certain terms in an
equation are purposely made “small” relative to other terms. Such limits reflect
physical situations in which certain physical quantities or processes do, in fact,
dominate others. For instance, the compressible hydrodynamic Euler equations,
which describe inviscid fluid flow, represent an asymptotic limit of the nonlinear
Boltzmann equation for rarefied gas dynamics. In that limit, the ratio of the mean
distance between atomic collisions to the system size goes to zero. Similarly, the
equations for incompressible fluid flow can be derived from the compressible
Euler equations in the limit as the ratio of the material speed to the speed of
sound in the material goes to zero. Although asymptotic equations approximate
the equations from which they are derived, they accurately represent system
behaviors for problems that are highly asymptotic.

An asymptotic equation emerges from the process for obtaining a formal
asymptotic solution. The mathematical procedure for obtaining such a solution
introduces an asymptotic dimensionless scaling parameter ¢ that tends to zero.
First, the original, or parent, equation is put in dimensionless form, and some of
the terms in the equation are scaled by €", where n is a positive integer that may
take on different values for different terms. This scaling is defined so that the
equation has the desired asymptotic physical behavior as € goes to zero. Once the
scaling is completed, the equation is returned to dimensional form, and the asymp-
totic solution is assumed to take the form of a power series expansion in €. This
expansion is substituted into the scaled equation, and coefficients of like powers of
€ are equated, thereby forming a hierarchical set of equations for the expansion
coefficients. The expansion coefficient associated with the lowest power of € rep-
resents the asymptotic solution, that is, the solution obtained in the limit as € goes
to zero. One can use the hierarchical equations to deduce the equation satisfied by
the asymptotic solution and thereby obtain the asymptotic equation.

Because the asymptotic equation is generally simpler than the parent equation,
it is easier to solve the asymptotic equation for the problems for which it applies
than to solve the parent equation. The applicable problems are those in which the
assumed dominance of certain terms occurs to a significant extent. Of course, no
real problem is perfectly asymptotic, but the exact limit can be approached as
closely as desired. As a problem becomes increasingly asymptotic, the solution of
the asymptotic equation approaches the solution of the parent equation. However,
many problems that require numerical solutions have spatial regions that change
in time from asymptotic to nonasymptotic. In those cases, it is often impractical
to solve the parent equation in nonasymptotic regions and the asymptotic equa-
tion in asymptotic regions. Thus, one must obtain solutions in both the nonas-
ymptotic and asymptotic regions using a single numerical approximation to the
parent equation. For the approximation scheme to be valid, solutions to the dis-
crete equation must converge to the continuum solutions as the mesh size goes to
zero in both asymptotic and nonasymptotic regions. The problem is that not all
methods of discretizing the parent equation produce solutions that converge
appropriately in the asymptotic regions. On the contrary, for some discretization
schemes, an accurate asymptotic solution is obtained only if the mesh size &
resolves length scales much smaller than those relevant to the asymptotic
solution. We call such schemes nonasymptotic preserving. Such schemes are
inefficient in highly asymptotic regions because they require an excessively large
number of spatial cells. In fact, nonasymptotic-preserving schemes require an
infinite number of cells in the limit as a region becomes perfectly asymptotic.
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To determine whether a discretization scheme “preserves” the asymptotic limit
(that is, converges appropriately to the asymptotic solution), one must perform
and analyze an asymptotic expansion for the discrete equation that is completely
analogous to the expansion for the continuum equation. In this article, we use a
particle transport equation and the asymptotic diffusion limit associated with this
equation to illustrate both the continuum and discrete asymptotic methodologies.
The asymptotic diffusion limit of particle transport is characterized by negligible
particle absorption and a diffusion length that is large relative to the mean free
path (or average distance between collisions). We derive the diffusion limit for
the continuum transport equation and then apply the asymptotic methodology to
two spatially discrete forms of the transport equation. One form is obtained
using the diamond discretization scheme, and the other is obtained using the
upwind discretization scheme. We show that the diamond scheme is asymptotic
preserving and the upwind scheme is not. Finally, we give specific computational
examples demonstrating the contrasting behavior of these schemes in highly
asymptotic (diffusive) problems.

We focus our discussion on a particle transport equation:

aVN Oy +1 ’ ’
HGE oo = N dr 0 23) ’

This is an equation for a phase-space particle-density function, N(x, ). Although
this function depends on a single spatial coordinate, its domain is 3-D and corre-
sponds to an infinite slab. All particles travel at a single speed, v, in directions
characterized by the cosine u = v,/v. Each cosine corresponds to a cone of direc-
tions as illustrated in Figure 9. Particles are assumed to be uniformly distributed
within the band. The number of particles located at position x in direction i, is
N(x, u) dx du. The spatial volume associated with dx has unit dimensions in the
other two Cartesian coordinates, that is, it consists of a differential rectangular
box with dimensions dx x 1 x 1. Particles are randomly absorbed and scattered ~ Figure 9. Variable Definitions for
within the medium. The scattering is isotropic, that is, particles scatter into all the Particle-Density Function
directions with equal probability. The absorption cross section is o, and the scat- N(x, 1) . .
tering cross section is 0. The expected absorption rate of particles in direction The m.'mb.e ' o.f pa':tldes.at position
- ) i ) . x moving in direction g is N(x, p) dx dp.

at position x is 0, VN(x, i) dx dy, and the expected scattering rate of particles in
direction 4 at position x is o,VN(x, ) dx du. The total cross section, o, is the
sum of the absorption and scattering cross sections. The mean distance between
particle interactions is called the mean free path, and it is given by A, = 1/0,. The
mean free path represents a fundamental spatial scale length in highly absorbing
media that appears explicitly in the transport equation. For instance, after travel-
ing a distance s in a purely absorbing medium, a beam of particles is attenuated
by a factor of exp(—s/A,). The quantity Q(x,u) is the particle source function.
Therefore, the number of particles created at position x in direction u is
Q(x,u) dx dy.

Equation (23) is a statement of particle conservation. It simply states that the
source rate for the particles entering the differential phase-space volume at posi-
tion x and direction ¢ must equal the sink rate for the particles leaving that vol-
ume. The boundary conditions for Equation (23) are given in terms of the inci-
dent particle distributions at the boundaries. For instance, if the problem domain
is the interval [0, 1], the solution to Equation (23) is uniquely determined once N
is defined at x = 0 for g > 0 and at x = 1 for u < 0.
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It is convenient for our purposes to rewrite Equation (23) as

d
nFroy=(0-0)9+0 .
X

where

(24)

1 p+1
_ L Nu' . 25
¢ 2_[_1 w(x,u’)du (25)

The quantity y = VN is called the angular flux, and the directional average of y,
which is denoted by ¢, is called the scalar flux.

We now begin the derivation of the asymptotic diffusion limit associated with
Equation (24). For simplicity, we skip the nondimensionalization process and
directly scale Equation (24) by the nondimensional scaling parameter &:

v o (o _
L ""(g eoa]¢+sg : (26)

Scaling the terms in Equation (24) ensures the following behavior as € — 0:

(1) The total cross section scales with £! and thus becomes infinite (or,
equivalently, the mean free path goes to zero).

(2) The absorption cross section scales with € and thus goes to zero.

(3) The source scales with € and thus goes to zero to properly normalize the
solution.

Because both the mean distance between collisions and the probability of
absorption go to zero, it is not difficult to imagine that the result will be a diffu-
sion process for the particles.

We next assume a power series expansion in € for the asymptotic solution:

1’/ =201//(”)8” . (27)

Substituting Equation (27) into Equation (26) and equating coefficients of like
powers of & we obtain a hierarchical set of equations for the expansion coeffi-
cients in Equation (27). After slight algebraic manipulation, the leading-order
equation O(1) becomes

O =0 (28)

This equation simply states that the leading-order solution is isotropic, that is,
independent of direction. After considerable manipulation and use of
Equation (28), the O(¢) equation becomes

+ o0 (29)

©)
y_ _M 997
v ar

O

The O(&?) equation (after considerable manipulation and use of previous equa-
tions) becomes
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_ M 9"

0
H o, or

+ ¢(1) + Oy l//(2) = Gt(b(z) - O-a¢(0) +0 . 30)

Averaging Equation (30) over all i (by integration), we find that the
leading-order solution, Y9 = ¢(0), satisfies the following diffusion equation:

9 [ ap®

_Z + 0,00 =
or| 30, or 0uf Q

€1y

Thus, we see that this asymptotic scaling does indeed lead to a limit in which the
transport solution satisfies a diffusion equation. The effective boundary condi-
tions satisfied by the asymptotic diffusion solution must be determined by a
boundary-layer analysis beyond the scope of this discussion. It suffices to note
that, with no incoming particles at the boundaries, the asymptotic diffusion solu-
tion is zero at both boundaries.

The fundamental scale length associated with the diffusion equation is the dif-
fusion length L:

1 At

\30,0; 30, .

Homogeneous solutions of Equation (31) have the form exp(+x/L). Note that, if
we apply the asymptotic scaling defined in Equation (26) to L, we find that L is
independent of &, which is appropriate because an asymptotic scale length should
not depend on &. Further note that, since L is O(1) and 4, is O(¢) in the diffusion
limit, the mean free path becomes infinitely small relative to a diffusion length in
the asymptotic diffusion limit. This implies that the mean free path can be arbi-
trarily small relative to a diffusion length in problems that are highly diffusive.

The diffusion limit for a spatially discretized transport equation is completely
analogous to that for the analytic transport equation. We have shown that the
transport solution satisfies an analytic diffusion equation in the asymptotic diffu-
sion limit. By analogy, one would expect a spatially discrete transport solution to
satisfy a valid spatially discrete diffusion equation in the asymptotic diffusion
limit. A transport spatial-discretization scheme preserves the asymptotic diffusion
limit when this occurs. In a practical sense, this means that an accurate solution
can be expected in highly diffusive problems if the width of each mesh cell is
small compared with a diffusion length. If a discretization scheme does not pre-
serve the diffusion limit, one generally finds that an accurate solution can be
obtained for highly diffusive problems only if the width of each cell is small with
respect to a mean free path. This condition is nonphysical in the sense that the
mean free path is an appropriate scale length for the transport solution in highly
absorbing problems, but it is not a scale length for the transport solution in diffu-
sive problems. More significantly, as a problem becomes increasingly diffusive,
the mean free path approaches zero while the diffusion length remains constant.
Thus, an arbitrarily large number of spatial cells can be required to obtain an
accurate solution in highly diffusive problems if a spatial-discretization scheme
does not preserve the asymptotic diffusion limit.

We next consider two spatial-discretization schemes for the transport equation
and discuss their properties for diffusive problems. The first is the upwind
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scheme, and the second is the diamond scheme. Although it may not be obvious,
all transport discretizations are completely defined by the equations for a single
spatial cell. The reason is that each spatial cell can be considered to be an inde-
pendent transport domain with the incoming angular flux defined by either true
boundary conditions or the outgoing angular fluxes from adjacent cells. Let us
consider a cell defined over the interval [x,_,y, x;,10). and let h = x;, 1 p — X1
denote the cell width. Integrating Equation (24) over this interval, we get the bal-
ance equation, which is exact:

AL L— VL] [h+ouyi= (0= 0)6,+ 0, . 33)

For simplicity, we have assumed a uniform grid with constant cross sections

in Equation (33). Three angular fluxes appear in this equation, namely, two
cell-edge values and one cell-average value. As previously noted, the incoming
cell-edge angular flux is known, leaving two unknowns: the cell-average and
the outgoing cell-edge angular fluxes. The balance equation provides one of
two equations needed to close the system. The second equation is usually called
the auxiliary equation and relates the outgoing cell-edge and cell-average angu-
lar fluxes. In the case of upwind differencing, the outgoing cell-edge angular
flux is equal to the cell-average angular flux:

Vi= W1 foru>0,
2

=y | foru<0. (34
T2

In the case of diamond differencing, the cell-average angular flux is the arith-
metic average of the incoming and outgoing cell-edge angular fluxes:

forallu . (35)

An asymptotic analysis for the upwind scheme in the thick diffusion limit
yields a rather bizarre result. In particular, the upwind asymptotic solution satis-
fies the following difference equation:

d(o_ o) 1[(0_,0)_
4h(¢i ¢i—l) 4h(¢i ¢i+1) 0. (36)

If we multiply Equation (36) by 4/h, we obtain a standard three-point cell-
centered discretization for the following analytic diffusion equation:

92¢(0)
o 7

However, comparison with Equation (31) shows that this is not the right diffusion
equation. It contains no cross sections and no source! Thus, the upwind scheme
does not preserve the asymptotic diffusion limit.
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An asymptotic analysis of the diamond scheme in the thick diffusion limit
indicates that the diamond solution satisfies the following asymptotic difference
equation:

[——

1 (oA 1
—— 0" =20 + 0 | [0?+ =210, 4209 499 | =20, +0) . (38)
3Gt l+5 H—E 1—5 4 t+3 1+3 2

This is a valid discretization scheme for the diffusion equation given in
Equation (31). Thus, the diamond scheme preserves the asymptotic diffusion
limit.

We next consider computational examples that will hopefully make the con-
cept of the discrete diffusion limit concrete. To illustrate the discrete asymptotic
limit, we first define a fixed initial transport problem and associate it with € = 1.
The problem then changes as a function of &, according to the scaling of the total
cross section, the absorption cross section, and the source given in Equation (26).
Specifically, the initial problem is defined as follows:

(1) The spatial domain is the interval [0, 1], measured in centimeters, and is
fixed for all €.

(2) The transport solution satisfies vacuum boundary conditions, that is, y is
zero at both boundaries in the incoming directions.

(3) The internal source is spatially constant with Q = 1 particle per cubic
centimeter per second [p/(cm3-s)].

(4) The cross sections are spatially constant with 6, = 10 expected interac-
tions per centimeter and ¢, = 0.1 expected absorption per centimeter.

(5) The cell thickness, A, is 0.1 centimeter, for a total of 10 spatial cells.

As previously stated, we assume that this initial problem corresponds to € = 1.
Then, we scale o, by el 0, by & and Q by &. For instance, when £ = 0.1, we
find that o, = 100 expected interactions per centimeter,o, = .01 expected absorp-
tion per centimeter, and Q = 0.1 p/(cm3-s). The asymptotic transport solution to
this sequence of problems satisfies Equation (31) with zero Dirichlet boundary
conditions; that is, the solution is zero at both boundaries. Note that the diffusion
equation is invariant to the scaling of the physical parameters, so the set of physi-
cal parameters for any value of € may be used to evaluate the asymptotic diffu-
sion solution. Furthermore, note that h//'Lt is scaled by & 1 5o the number of mean
free paths per cell becomes infinite as € — 0.

We plot the upwind and diamond solutions in Figures 10 and 11, respectively,
for € =1, 0.25, and 0.1. Figure 11 shows that the upwind solutions converge to
zero with decreasing €, in accordance with the analysis. This convergence to zero
occurs because particles enter the computational domain only through the internal
source O, which is not present in the discrete asymptotic equation given by
Equation (14). It can be seen from Figure 3 that the diamond solutions appear to
converge to the analytic asymptotic diffusion solution given by Equation (31).
However, the convergence will eventually stagnate because the mesh is fixed.
The diamond solutions actually converge to the solution of Equation (38) with
boundary conditions corresponding to ¢®) = 0 at both x = 0 centimeter and
x =1 centimeter.

We next demonstrate the excessive mesh refinement required by a scheme that
does not preserve the diffusion limit. In particular, we plot the upwind solutions for
the problem corresponding to € = 0.1 calculated with 10, 100, and 1000 spatial
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Figure 10. Solutions for the
Scalar Flux in the Asymptotic
Diffusion Limit with Upwind
Spatial Differencing

Shown are the numerical solutions to
Equation (31) for several values of ¢.
The “exact” analytical solution is
also shown.

Figure 11. Solutions for the
Scalar Flux in the Asymptotic
Diffusion Limit with Diamond
Spatial Differencing

Shown are the numerical solutions to
Equation (31) for several values of .
The “exact” analytical solution is also
shown.
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cells, respectively. It can be seen from Figure 12 that the upwind scheme is con-
verging, but a small amount of error is still evident with 1000 spatial cells. The cell
thickness in the 1000-cell calculation is 0.01 mean free paths. As expected, an accu-
rate solution requires a cell width that is small when measured in mean free paths.
The accuracy of the 1000-cell calculation will be maintained for smaller values of &
only if the cell width remains fixed when measured in mean free paths.

This is why schemes that do not preserve the diffusion limit can require an
arbitrarily large number of mesh cells in highly diffusive problems. For instance,
one would have to use 10,000 spatial cells for the € = 0.01 problem to obtain
essentially the same solution as with 1000 cells for € = 0.1. In general, the num-
ber of cells required to maintain a given level of accuracy will be inversely pro-
portional to €. This is to be contrasted with the asymptotic-preserving diamond
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scheme, which maintains a given level of accuracy with a fixed number of cells
in the limit as € — 0, even though the cell width measured in mean free paths
becomes infinite in this limit.

In summary, it is essential to use asymptotic-preserving discretization schemes
in asymptotic problems whenever the scale lengths associated with the asymptot-
ic equation are much larger than one or more scale lengths that explicitly appear
in the parent equation. Schemes that are not asymptotic preserving can be prohib-
itively expensive to use because they require the mesh to be refined with respect
to scale lengths that can be arbitrarily small compared with the scale lengths
associated with the asymptotic solution. Although we have focused on the trans-
port equation and the asymptotic diffusion limit, the basic properties that we have
illustrated apply to a wide variety of physical systems. The concept of asymptot-
ic-preserving discretizations is relatively new and not well known in the compu-
tational community. However, it can be expected to gain widespread attention in
the near future because of the increasing emphasis on multiphysics/multiscale
numerical simulation.

Conclusions

The common thread of the three numerical methodologies discussed in this
article is the inclusion of physical insight. Perhaps, the major driving force at Los
Alamos for developing such methodologies is the weapons program. However,
these methods are also affecting such diverse areas as weather simulation, mag-
netic-confinement fusion simulations, nuclear reactor safety simulation, and air-
craft design. Efforts aimed at developing and implementing such methods are
ongoing within several Los Alamos programs. However, developing physically
motivated numerical-discretization schemes remains a challenging task as we
move toward more-accurate computer simulations of phenomena involving many
types of physics. m
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Erratum to “Photoelectron Spectroscopy of Alpha- and Delta-Plutonium”
Los Alamos Science 26: 168, 2000
A.J. Arko, J. J. Joyce, L. A. Morales, J. H. Terry, and R. K. Schulze

Some of the plutonium research presented in the article was conducted at the
Advanced Light Source (ALS), Lawrence Berkeley National Laboratory. The
ALS work was performed as a multi-institutional collaboration. In addition to the
authors listed for the ALS work (J. H. Terry and R. K. Schulze), we would like to
acknowledge their coworkers, who were Jim Tobin of Lawrence Livermore
National Laboratory; Tom Zocco and Doug Farr of Los Alamos National
Laboratory; David Shuh, Eli Rotenberg and Keith Heinzelman of Lawrence
Berkeley National Laboratory; and Peter Boyd of Boyd Technologies. Further
details of this portion of the plutonium research are available through the follow-
ing publications: J. Terry, R. K. Schulze, J. D. Farr, T. Zocco, K. Heinzelman, E.
Rotenberg, D. K. Shuh, G. van der Laan, D. A. Arena, and J. G. Tobin. 2002. 5f
Resonant Photoemission from Plutonium. Surf. Sci. Lett. 499: L141; J. G. Tobin,
B. W. Chung, R. K. Schulze, J. Terry, J. D. Farr, D. K. Shuh, K. Heinzelman, E.
Rotenberg, G. D. Waddill, and G. van der Laan. 2003. Resonant Photoemission in
Jf-Electron Systems: Pu and Gd. Phys. Rev. B 68: 155109.
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